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ABSTRACT

The design and analysis of spiking neural network algo-
rithms will be accelerated by the advent of new theoretical
approaches. In an attempt at such approach, we provide a
principled derivation of a spiking algorithm for unsupervised
learning, starting from the nonnegative similarity matching
cost function. The resulting network consists of integrate-
and-fire units and exhibits local learning rules, making it
biologically plausible and also suitable for neuromorphic
hardware. We show in simulations that the algorithm can
perform sparse feature extraction and manifold learning,
two tasks which can be formulated as nonnegative similarity
matching problems.

Index Terms— nonnegative similarity matching, spiking
neural networks, online optimization

1. INTRODUCTION

While our brains serve as an evidence of the capability and
the efficiency of spike-based computation, despite the recent
progress in neural networks research [1], spiking neural net-
works (SNNs) [2] still remain largely unexplored and under-
utilized. This is partly because SNNs pose new challenges in
theoretical understanding compared to neural networks with
analogue units (AUNNs). Novel analytical methods would
advance the design and analysis of SNN algorithms.

In this paper, we present a theoretically principled ap-
proach to designing SNN algorithms that learn representa-
tions from data in an unsupervised manner. Differing from
modern deep learning methods [1], we not only “derive” the
learning rules but also the dynamics and the architecture of
an SNN from a cost function, whose optimization describes a
learning task. This approach results in efficient SNNs special-
ized to solve the task. Access to a cost function allows pre-
diction of the SNN algorithm’s behavior on different datasets.

A challenge to the derivation of SNNs is the desired
locality of an SNN’s learning rules, i.e. SNN synaptic up-
dates should depend only on the activities of the pre- and
post-synaptic units. Local updates are necessary for imple-
mentability on neuromorphic hardware [3] and also for bio-
logical plausibility. But, how could such uninformed learning

be optimal in any sense? Naively, if the synapse had access
to the activity of other units, it could make a better update.
Indeed, existing derivations of learning SNNs ended up with
non-local learning rules, starting from various cost functions
and optimizing by gradient methods. To arrive at local learn-
ing, authors either resorted to approximations [4, 5, 6], or to
a contrastive learning procedure [7].

To solve the locality problem, we will adopt a technology
that was recently developed for deriving AUNNs: similarity-
based cost functions [8]. This family of costs lead to AUNNs
with local learning rules when optimized by gradient meth-
ods [8, 9]. We will focus on a particular similarity-based cost
function, nonnegative similarity matching (NSM) [10, 11],
because of its versatile usability across many learning tasks.

In order to introduce the NSM problem, we assume the in-
put data be a set of vectors, xt=1,...,T ∈ Rn and the output be
another set yt=1,...,T ∈ Rk. Taking dot product as a similarity
measure, NSM aims to learn a representation where the sim-
ilarities between output vector pairs match that of the input
pairs, subject to nonnegativity constraints and regularization:

min
∀yt≥0

1

2T 2

T∑
t=1

T∑
t′=1

(
x>t xt′ − y>t yt′ − α2

)2
+

2λ1
T

T∑
t=1

‖yt‖1 +
λ2
T

T∑
t=1

‖yt‖22 . (1)

Without the regularizers (α = λ1 = λ2 = 0), this cost func-
tion was used for clustering [10, 11, 12], sparse encoding
and feature extraction [11, 13], and blind nonnegative source
separation [14]. With α and λ2 turned on, it was used for
manifold learning [15]. We also include an l1-norm regular-
ization for the capability of increased sparsity in the output
[16, 17, 18]. Overall, an SNN that solves the NSM problem
will be a versatile tool for learning representations from data.

A second challenge to the derivation of SNNs is the spik-
ing dynamics. Recent work showed how to design and de-
rive spike-based optimization algorithms to solve certain op-
timization problems [19, 20, 21, 22] in non-learning settings.
In order to derive a learning SNN with local learning rules,
we will use one of these spike-based algorithms, that of [22],
to optimize the NSM cost function (1). We call the resulting
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algorithm Spiking NSM.
The rest of the paper is organized as follows. In Section 2,

we show how an AUNN with local learning rules can be de-
rived from NSM. Building on these results, in Section 3, we
derive the Spiking NSM algorithm. In Section 4, we present
our numerical experiments on sparse encoding and feature ex-
traction, and manifold learning. We conclude in Section 5.

2. DERIVATION OF AN AUNN ALGORITHM FROM
THE NSM COST FUNCTION

We start by deriving an AUNN from the cost in (1). While our
presentation mostly follows previous accounts [11, 9], there
are important variations and novelties that enable the deriva-
tion of the Spiking NSM algorithm in the next section.

There are immediate problems with deriving an AUNN
from (1). It has only inputs and outputs, but not synaptic
weights. A neural network operates in an online fashion, pro-
ducing an output yt immediately after seeing an input xt, but,
in (1), pairs of inputs and outputs from different time points
interact with each other.

These problems can be solved by following the procedure
described in [9]. Starting from the NSM cost (1), we obtain
a dual min-max objective by introducing new auxiliary vari-
ables W ∈ Rk×n, M ∈ Rk×k, and b ∈ Rk, which will be
interpreted as synaptic weights shortly:

min
W∈Rk×n

max
M∈Rk×k

max
b∈Rk

1

T

T∑
t=1

lt(W,M,b), (2)

where

lt := TrW>W − 1

2
TrM>M− ‖b‖22

+ min
yt≥0

ht(W,M,b,yt),

ht := −2y>t (Wxt − αb) + y>t Myt

+ 2λ1 ‖yt‖1 + λ2 ‖yt‖22 . (3)

The new objective (2) is equivalent to (1) upto a change in the
order of optimization, which can be seen by plugging back
the optimal values of W∗ = 1

T

∑
t ytx

>
t , M∗ = 1

T

∑
t yty

>
t

and b∗ = α
T

∑
t yt.

The min-max objective allows an online NSM algorithm
because the objective is factorized into a summation of terms,
lt, in a way that pairs of inputs and outputs from different time
points are decoupled. For each input xt, we use a two-step
alternating optimization procedure [23, 24] on lt to produce
an output yt and update variables W, M, and b. We now
discuss these steps, and how they map to the operations of an
AUNN with local learning rules.

2.1. Solving for outputs with an AUNN

The first step of the alternating optimization is minimizing ht
(and lt) with respect to nonnegative yt, while keeping W,

x1

xn

. . .

x2

y1

yk

. . .

y2

W

-M

anti-Hebbian synapsesHebbian

1 a

Fig. 1. The network architecture. Some lateral connections
are not shown for better visibility. ai = −αbi for the AUNN
algorithm, and ai = −αbi − λ1 for the SNN algorithm.

M, and b fixed1. Define M̄ := M − diag (M), where diag
operator sets off-diagonal elements of a matrix to zero. Then,
the following dynamical system minimizes ht2:

dui(τ)

dτ
= −ui(τ) + [Wxt]i − αbi −

[
M̄yt(τ)

]
i
,

yt,i(τ) = gi(ui(τ)) :=

{
0, ui(τ) ≤ λ1
ui(τ)−λ1

λ2+Mii
, ui(τ) > λ1

,

i = 1, . . . , k. (4)

This system can be interpreted as the dynamics of the neural
network shown in Figure 1. xt is the input to the network
and yt is the output vector of unit activities. W and −M̄ are
feedforward and lateral synaptic weight matrices. −αbi is the
synaptic weight to unit i from an input unit with activity 1.
Finally, gi is a unit-dependent activation function.

We note that previous AUNN derivations from similarity-
based cost functions used subgradient descent [18] , projected
gradient descent [9] or coordinate descent [11, 8, 26] dynam-
ics for this step of the algorithm. Our dynamics choice here
is motivated by its generalization to an SNN, which will be
presented in the Section 3.

2.2. Updating synaptic weights with local learning rules

The second step of the alternating optimization is to perform
gradient updates in W, b, and M with fixed yt, which we
write in component notation to expose their locality:

∆Wij = η (yt,ixt,j −Wij) , ∆M̄ij,i 6=j = η
(
yt,iyt,j − M̄ij

)
,

∆Mii = η
(
y2t,i −Mii

)
, ∆bi = η (αyt,i − bi) , (5)

where η is a learning rate. W update is a Hebbian synaptic
plasticity rule. M̄ and b updates are anti-Hebbian (because
of the − signs in corresponding terms in (4)). Mii update
changes the gain function of a neuron, and can be interpreted
as a homeostatic plasticity rule.

1Note that this is a nonnegative elastic net problem [17].
2It is easy to show that for this dynamics dht

dτ
≤ 0. A rigorous discussion

of convergence can be found in [25] (see the Conclusion section of [25]).



3. DERIVATION OF THE SPIKING NSM
ALGORITHM FROM THE NSM COST FUNCTION

Next, we derive an SNN algorithm with local learning rules,
the Spiking NSM algorithm, from the NSM cost function (1).
We do this by replacing the optimization algorithm for mini-
mizing ht with a spike-based one.

3.1. Solving for outputs with an SNN

The SNN of Tang, Lin and Davies [22] minimizes ht. We first
describe the SNN and then cite a theorem for its convergence
to the fixed point of the AUNN given in (4). Since the AUNN
fixed point is the minimum of ht, the SNN minimizes ht.

Consider a network of k integrate-and-fire units with the
same architecture as in Figure 1. We denote the ith unit’s
membrane potential by Vi(τ), input current by Ii(τ), and qth

spike time by τi,q . The units are perfect integrators, i.e. their
subthreshold membrane potentials are given by:

dVi(τ)

dτ
= Ii(τ), Vi(0) = 0, i = 1, . . . , k. (6)

When Vi(τ) reaches a firing threshold V th
i := λ2 + Mii,

the unit emits a spike and the membrane potential is set to
0. Synaptic input is defined as

dIi(τ)

dτ
= −Ii(τ) + [Wxt]i − αbi − λ1 −

[
M̄σ(τ)

]
i
,

Ii(0) = [Wxt]i − λ1 − αbi, i = 1, . . . , k, (7)

where xt is the input to the network, σi(τ) :=
∑
q δ(τ − τi,q)

is the spike train of the ith unit, W and −M̄ are feedforward
and lateral synaptic weight matrices, and −αbi − λ1 is the
synaptic weight to unit i from an input unit with activity 1.

Under mild assumptions, it can be shown that time-
averaged spike trains converge to the fixed point of the AUNN
defined in (4) and therefore minimize ht. More precisely, let’s
define

ỹi(τ) :=
1

τ

∫ τ

0

dτ ′ σi(τ
′), i = 1, . . . , k. (8)

Theorem (Tang, Lin, Davies [22]). (Informal) Assume that
the duration between a unit’s consecutive spikes is not arbi-
trarily long but upper bounded, with the exception of the unit
stopping spiking altogether after some time. Then, as τ →∞,
ỹi(τ) converges to the value of yt,i at the fixed point of the dy-
namical system (4).

Proof. The results of [22] can be easily extended to prove this
result. See especially the Discussion section of [22].

3.2. Updating synaptic weights with local learning rules

After the spiking dynamics converges, we update W, b and
M as in (5), using the spiking estimate for yt from (8). Note

thatMii updates are still interpreted as homeostatic plasticity,
but this time they change the firing thresholds of units.

The final Spiking NSM algorithm is summarized below.

Algorithm Spiking NSM
Input: Parameters α, λ1 and λ2. Initial weights M ∈ Rk×k,
W ∈ Rk×n and b ∈ Rk.
for t = 1, 2, 3, . . . do
// Spiking neural dynamics
Taking xt as input, run the SNN defined by equations
(6), (7), (8) until convergence.
// Synaptic and homeostatic
plasticity
Update W, b and M as in (5), using the spiking estimate
for yt from (8).

end for

4. EXPERIMENTAL RESULTS

In this section, we apply the Spiking NSM algorithm to var-
ious datasets for sparse encoding and feature extraction [11],
and manifold learning [15]. Our purpose here is not to com-
pare the performance of NSM with other unsupervised learn-
ing methods, this was done in [12, 13, 14]. We wish to demon-
strate that Spiking NSM actually performs online NSM.

4.1. Solving for outputs with spike-based dynamics

Before attempting a learning task, we first checked whether
the SNN defined by equations (6), (7), (8) indeed minimizes
ht, by simulating it with randomly chosen values for lateral
connectivity and inputs. More precisely, we set α = 0.3,
λ1 = 0.3, λ2 = 0.1, drew bi from a uniform distribution in
[0, 1] and (Wx)i in [0, 5], and set M = VV>, where Vij
were drawn from a uniform distribution in [0, 1/

√
k]. For

each k ∈ {2, 4, 8, 16, 32, 64, 128, 256}, we repeated this pro-
cedure until we obtained 100 accepted parameter sets. A
parameter set was accepted if the norm of the minimum of
ht, found by MATLAB’s fmincon function, had an l2-norm
greater than 0.01. For each parameter choice, we simulated
the corresponding SNN until τ = 500, using a first-order Eu-
ler method with a step-size dτ = 0.01.

Figure 2 shows that the SNN achieves the minimum of
ht within a few percent. The error for a parameter set was
measured by ‖y − ŷ‖2 / ‖ŷ‖2, where y is the result from the
SNN and ŷ from fmincon. We observed that longer simula-
tion times and finer step-sizes led to better performance. In
the rest of this section, we used the simulation time and step
size configuration used here.

4.2. Sparse encoding and feature extraction

Previously, NSM was shown to extract sparse features from
data [11, 14]. We trained Spiking NSM networks on two
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Fig. 2. Spike-based minimization of ht. Red lines show me-
dian, box edges show 25th and 75th percentiles and whiskers
show maxima and minima.

datasets to test this function: 1) the MNIST dataset of 6 ×
104 images of hand-written digits [27], and 2) a dataset of
4 × 105 16-by-16 image patches sampled randomly from a
set of whitened natural scenes [23]. For both simulations,
α = λ2 = 0, initial M was set to identity matrix and b to
zero. Learning rates were 10−3 for the first 104 steps, 10−5

for the next 9× 104 steps, and 0.5× 10−5 later. For MNIST,
λ1 = 0.5, k = 196 and initial Wij were drawn uniformly
from [0, 1/14]. For image patches, λ1 = 0, k = 256 and ini-
tial Wij were drawn from N (0, 1/196). At each iteration, a
randomly chosen datum was shown to the network.

MNIST Image patches

(a) Examples of learned features
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(b) CDFs of output unit activity

Fig. 3. Spiking NSM extracts sparse features.

Figure 3 shows the results of our simulations after 106 it-
erations. Panel (a) displays 64 examples of learned features
for each dataset, extracted from the rows of W as in [11]. Im-
age patch features are oriented edges, as in sparse coding [23].
Panel (b) displays cumulative distribution functions (CDFs)
of the networks’ time-averaged spiking output activities (Eq.

(8)) calculated over the whole datasets. Activities are highly
sparse.

4.3. Manifold learning

NSM learns a data manifold by learning features that tile
the manifold [15]. To test this function, we used a one-
dimensional data manifold in a high dimensional space,
composed of 71 576-by-768 images of a shoe rotated by
5◦increments [28] (examples shown in Figure 4(a)). After
normalizing each image to unit norm, we trained a Spiking
NSM with k = 100 output units and λ1 = λ2 = 0, α = 0.8.
The α parameter sets the scale of local similarity neighbor-
hoods [15]. The rest of the simulation parameters matched
the MNIST case.

(a) Examples of input images (b) Examples of learned features
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(c) Ordered unit responses as a function of the rotation angle

Fig. 4. Spiking NSM tiles data manifolds

Figure 4 shows our results after 1.8×104 iterations. Panel
(b) displays 6 example learned features, which are localized
to the vicinity of particular shoe rotation angles. Panel (c)
shows the time-averaged spiking activity of output units (Eq.
(8)) as a function of the shoe’s rotation angle. As promised,
the units tile the data manifold.

5. CONCLUSION

We presented a principled derivation of the Spiking NSM al-
gorithm, which exhibits local learning rules, from the NSM
cost function (1). We applied the algorithm to various datasets
and interpreted its action as sparse feature extraction and en-
coding, or manifold learning, based on analytical analyses of
the NSM cost function [14, 15].

With the advent of new spiking neuromorphic hardware
[3], the need for new SNN algorithms with local learning rules
is increasing. We expect the principled approach presented in
this paper to be useful in this quest.
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